Information technology - security techniques - digital signature schemes giving message recovery - integer factorization based mechanisms 信息技術(shù).安全技術(shù).使電文恢復(fù)的數(shù)字簽名方案.基于整數(shù)因子分解的機(jī)制
Information technology - security techniques - digital signature schemes giving message recovery part 2 : integer factorization based mechanisms 信息技術(shù).保密技術(shù).具有信息恢復(fù)功能的數(shù)字簽名方案.第2部分:基于整數(shù)因子分解的機(jī)構(gòu)
Chun - chih peng and chung - huang yang , " design and implementation for integer factorization and primality testing tools with elliptic curve on windows platforms , " 2007 symposium on cryptography and information security , sasebo , japan , january 2007 張家瀚、楊中皇,支援鏈結(jié)機(jī)制之標(biāo)準(zhǔn)化時(shí)戳實(shí)作, 2007知識(shí)社群與資訊安全研討會(huì),文化大學(xué), 2007年5月。
Using the idea of secret - sharing and signature - of - knowledge , a new perfect and strong key - insulated signature scheme based on the assumption of integer factorization problem is proposed . the scheme has a low computation in key updating and signing , thus fitting for the mobile devices ( 6 )對(duì)簽名系統(tǒng)中的密鑰泄露問(wèn)題進(jìn)行了研究,在分析相關(guān)技術(shù)的基礎(chǔ)上,利用秘密分享和知識(shí)簽名,給出了一個(gè)完善的強(qiáng)key - insulated簽名方案。
The elliptic curve digital signature algorithm ( ecdsa ) is the elliptic curve analogue of the digital signature algorithm ( dsa ) . it was accepted in 1999 as an ansi standard , and was accepted in 2000 as ieee and nist standards . unlike the ordinary discrete logarithm problem and the integer factorization problem , no subexponential - time is known for the elliptic curve discrete logarithm problem . for this reason , the strength - per - key - bit is substantially greater in an algorithm that uses elliptic curves 橢圓曲線數(shù)字簽名算法( ecdsa )是數(shù)字簽名算法( dsa )的橢圓曲線對(duì)等。它先后成為ansi , ieee , nist和iso的標(biāo)準(zhǔn),而且其它的一些組織正在考慮成為其標(biāo)準(zhǔn)。不象普通的離散對(duì)數(shù)問(wèn)題和因數(shù)分解問(wèn)題,橢圓曲線離散對(duì)數(shù)問(wèn)題沒(méi)有已知的亞指數(shù)算法,所以使用橢圓曲線的算法在密鑰的位強(qiáng)度是足夠高的。
Secondly , we described the fundamental concepts and properties of group signature scheme and some general digital signatures that can be used to construct group signature amply , and presented a group signature scheme based on the integer factorization . thirdly , we explained the fundamental concepts and properties of authorized group signature in detail and propounded a secure authorized group signature based upon the discrete logarithm . finally , we illuminated electronic payment system in e - commerce and designed a simple and high secure electronic cash system with multiple banks based on group signature 首先,對(duì)群簽名體制的研究背景、意義以及發(fā)展現(xiàn)狀進(jìn)行了介紹;接著針對(duì)群簽名體制的基本概念和性質(zhì)以及可用于構(gòu)造群簽名的一些普通的數(shù)字簽名體制進(jìn)行了詳細(xì)描述,并基于大整數(shù)分解問(wèn)題給出一個(gè)群簽名方案;同時(shí)還對(duì)授權(quán)群簽名的基本概念和必須滿足的基本性質(zhì)進(jìn)行了詳細(xì)說(shuō)明,并且基于離散對(duì)數(shù)問(wèn)題給出一個(gè)安全的授權(quán)群簽名方案;最后,對(duì)電子商務(wù)中的一個(gè)重要組成部分? ?電子支付系統(tǒng)進(jìn)行了詳細(xì)的闡述,利用群簽名技術(shù)設(shè)計(jì)出一個(gè)簡(jiǎn)單、高安全性的多銀行電子現(xiàn)金系統(tǒng)方案。
The primary advantage that elliptic curve systems have over systems based on the multiplicative group of a finite field ( and also over systems based on the intractability of integer factorization ) is the absence of a subexponential - time algorithm ( such as those of index calculus type ) that could find discrete logs in these groups 與基于有限域的乘法群系統(tǒng)(及基于整數(shù)分解的難解性之上的系統(tǒng))相比,橢圓曲線系統(tǒng)的優(yōu)勢(shì)在于,迄今為止還沒(méi)找到這類群上離散對(duì)數(shù)的次指數(shù)時(shí)間算法(如微積分類)
百科解釋
In number theory, integer factorization or prime factorization is the decomposition of a composite number into smaller non-trivial divisors, which when multiplied together equal the original integer.